A review on robotic fish enabled by ionic polymer–metal composite artificial muscles
نویسنده
چکیده
A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal artificial muscles for small-scale and bio-inspired robots. This paper takes a system perspective to review the recent work on IPMC-enabled underwater robots, from modeling, fabrication, and bio-inspired design perspectives. First, a physics-based and control-oriented model of IPMC actuator will be reviewed. Second, a bio-inspired robotic fish propelled by IPMC caudal fin will be presented and a steady-state speed model of the fish will be demonstrated. Third, a novel fabrication process for 3D actuating membrane will be introduced and a bio-inspired robotic manta ray propelled by two IPMC pectoral fins will be demonstrated. Fourth, a 2D maneuverable robotic fish propelled by multiple IPMC fin will be presented. Last, advantages and challenges of using IPMC artificial muscles in bio-inspired robots will be concluded.
منابع مشابه
Prepration and Characterization of Novel Ionoic Polymers to be Used as Artificial Muscles
The muscle-like technology would be of enormous advantages for biomedical applications such as medical implants and human assist devices. Ionic polymer metal composites (IPMCs) are one kind of biomimetic actuators. An ionic polymer metal composite composed from an ionomer with high ion exchange capacity that packed between two thin metal layers. In the present study we focused on the prep...
متن کاملIONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By
IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By Zheng Chen Ionic polymer metal composites (IPMCs) form an important category of electroactive polymers (EAPs), also known as artificial muscles. IPMCs have many potential applications in robotics, biomedical devices, and micro/nano manipulation systems. In this dissertation, a systems perspective is t...
متن کاملIonic Polymer-Metal Composite Artificial Muscles in Bio-Inspired Engineering Research: Underwater Propulsion
© 2012 Chen et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ionic Polymer-Metal Composite Artificial Muscles in Bio-Inspired Engineering Research: ...
متن کاملModeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin
In this paper, a physics-based model is proposed for a biomimetic robotic fish propelled by an ionic polymer–metal composite (IPMC) actuator. Inspired by the biological fin structure, a passive plastic fin is further attached to the IPMC beam. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state cruising speed of the robot under a given period...
متن کاملModelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot
In this study, analytical techniques and fuzzy logic methods are applied to the dynamic modelling and efficient swimming control of a biomimetic robotic fish, which is actuated by an ionic polymer-metal composite (IPMC). A physical-based model for the biomimetic robotic fish is proposed. The model incorporates both the hydrodynamics of the IPMC tail and the actuation dynamics of the IPMC. The c...
متن کامل